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ABSTRACT 
 
This is part of a study to investigate time series (TS) forecasting of construction cost and tender price indices. TS models were developed by analysing TS 
index data for construction costs and tender price index (TPI) obtained from the Building Cost Information Service (BCIS) in the United Kingdom. These 
involve Exponential Smoothing and the Box-Jenkins ARIMA models using EViews 6 software including simple trend models using Microsoft Excel spread 
sheet. The results show that the models were able to predict construction cost and tender price indices reasonably except during periods of sudden jump 
in the time series. Generally, the models can be effective tools for predicting and understanding the trend of construction cost and tender price indices to 
help practitioners in the construction industry. 
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INTRODUCTION 
 
Construction projects are accompanied by large capital outlays which 
underscore the need for adequate cost planning prior to their 
commencements. Important aspects of this planning are cost estimating 
and the timing of projects in order to derive the most economic benefit 
for the client. Also, the contractor requires advance knowledge of costs 
and prices of construction inputs to prepare fast, accurate and 
competitive bids. These are enhanced through reliable forecasts of 
construction costs and tender price indices. Construction cost indices 
(CCIs) measure changes in contractors’ costs, while tender price indices 
(TPIs) measure changes in contractor’s prices for accepted tenders [1].  
 
In the United Kingdom (UK), these along with other related indices are 
produced and published quarterly by a number of organisations for both 
private and public sector projects. The building costs information service 
(BCIS) of the Royal Institution of Chartered Surveyors (RICS) is known to 
publish the most widely used indices for the UK construction industry   
[2-3].  A number of studies have been conducted over the years to 
improve BCIS forecasts [1-4]. In particular, [1] argues that the use of 
stochastic time series methods will ‘encourage confidence and enhanced 
sense of realism through demonstration of the ranges of forecasts and 
express quantifications of their reliabilities to the benefit of clients, 
consultants and contractors’.  
 
However, within the UK construction industry, there seems to be a dearth 
of research in time series forecasting techniques following [1].  Time 
series approach has been identified as a powerful tool for improving 
forecasts [5]. Also, [6] argue that TS technique is easier for appraising the 
variations in future construction costs, from the practical point of view. 
These provide the necessary background for the present study which is 
focussed on the UK construction industry, especially at a time when the 
UK Office for National Statistics is investigating ways of improving 
construction cost and price indices produced by the BCIS [7]. 
 
Developments in time series forecasting 
 
According to [8], time series forecasting is a recent phenomenon which 
came into existence about 1960 and before then, linear regression was 
the only statistical technique used. Exponential Smoothing (ES) was the 
earliest TS technique identified which was developed independently in 
works for the US Navy by Robert Brown and Charles Holt. Later works by 
George Box and Gwilym Jenkins in the mid-1960s resulted in the class of 
models known as auto-regressive integrated moving average (ARIMA). 
According to [8], this work was published in 1970. On the other hand, the 
Bayesian method was developed by Harrison and Stevens in 1976 [9]. 
This was followed in the 1980s and 1990s by another broad class of 
models called state space models [8]. [10] identified 24 forecasting 
procedures in their forecasting competition commonly referred to as M-
competitioni in literature. Then came the application of neural networks to 
time series in recent and contemporary times [11-13] 
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However, account by [14] contrast with [8]. According to [14] it was the 
work of Yule in 1927 that ‘launched the notion of stochasticity in time 
series’. According to them the idea by Yule that every TS process could be 
seen as the realisation of a stochastic process provided the foundation for 
the development of many TS methods. They named Slutsky, Walker, 
Yaglom and Yule as the first to formulate the concept of auto-regressive 
(AR) and moving average (MA) models, while Wold’s decomposition 
theorem led to the solution of the linear forecasting problem of 
Kolmogorov in 1941. This agrees with [6] who stated that time series 
method was developed by Yule in 1927 through his autoregressive 
technique, while Slutsky developed the moving average technique in 
1937. These accounts suggest that TS forecasting started much earlier 
than 1960 contrary to earlier suggestion by [8]  
 
Furthermore, [6] noted that Brown improved the moving average 
technique in 1970, while Durbin improved the auto-regression technique 
also in 1970, including the derivation of the partial autocorrelation 
function. They also noted that Box and Jenkins integrated the AR and MA 
techniques in 1976 to develop a mixed model, which is regarded as the 
best quantitative technique for the prediction of short term series [6]. 
This is supported by some researchers [5,15], but contrast with [8] who 
mentioned 1970 as the publication date for work of Box and Jenkins 
concerning the ARIMA model. Chatfield’s claim is in line with [16]. 
However, further findings in this research suggest that the Box-Jenkins 
methodology for autoregressive-moving average (ARMA) model was 
developed in 1970 and improved later to handle non-stationary data with 
a special class of model called autoregressive integrated moving-average 
(ARIMA). ARIMA model is a model which produces a stationary ARMA 
model when differenced d times [6, 17]. 
 
 Although researchers seem to have conflicting dates (between 1970 and 
1976) concerning the coming into effect of the Box-Jenkins methodology, 
there appear to be generally in agreement on the performance reliability 
of the approach [5, 14, 15, 16, 18, 19, 20]. On the other hand, exponential 
smoothing approach has received similar support from other researchers 
[8, 21-27]. Yet, another group of researchers have reported favourably on 
the Bayesian approach [28-29]. Research in time series appears to be 
extensive. [30] reviewed research developments in TS in the 1990s. 
Similarly, [14] in a review captured a number of studies in time series 
forecasting for 25 years covering the period 1985 – 2005. Their study 
covers a wide range of time series techniques in line with[8, 30] 
including: exponential smoothing (ES), ARIMA models (univariate and 
multivariate), state space models, structural models and the Kalman filter. 
Others include non-linear models such as neural networks, and the class 
of autoregressive conditional heteroscedastic (ARCH) models and the 
generalized ARCH (GARCH) model widely applied to financial time series. 
These models concentrate on modelling changes in variance. [8] argues 
that the ARCH and GARCH models are not suitable for novice. [8] further 
warns that novice forecasters should beware of claims for new methods, 
most of which are complicated; yet do not seem to produce better results 
than simple univariate techniques such as ES.  Many researchers are also 
in support of the use of simple approaches compared to complex methods 
which may be difficult to model appropriately [8, 10, 31-34]. The study by 
[14] did not compare different methods concerning their forecasting 
performance to ease selection of suitable techniques. However, attempts 
to compare forecasting techniques have been made from empirical 
studies in the 3 M-Competitions and other similar studies [10, 32, 35-38]. 



 
FS J Engg Res | 2012 | Vol 1 | No 1 16 www.fonscientia.com/journals/jenggres 

In spite of the multiplicity of techniques over the years, this study has 
shown that ES and Box-Jenkins approaches remain relevant to most 
present-day forecasting problems and are fundamental to most new 
approaches. This is particularly evident from researches applying TS 
approaches within the construction industry [5, 18, 20-22, 39-42 ]. Also, it 
appears that most of the new methods are some variants of the ES and 
Box-Jenkins approaches [8, 42]. These evidences suggest that the ES and 
Box-Jenkins (ARIMA) approaches are widely applied in practice. 
 
Applications of time series forecasting in construction 
 
Previous studies using TS forecasting in different areas of construction 
are summarised in Table 1 below. 
 
Table 1. Examples of applications of TS forecasting in the construction 
industry 
 

 
Table 1 above suggests that there is a dearth of research into the use of TS 
to forecast construction cost and tender price indices, particularly in the 
UK as only one of the examples given in Table 1 [1] is from the UK. Time 
series techniques have been used in the US [18, 21-22], South Africa [15] 
and Taiwan [6] to forecast construction cost index. Similarly, TS 
approaches have been applied in Hong Kong [5, 43] and Singapore [41] to 
forecast movements in construction tender price indices. However, in the 
UK where tender price indices are used to forecast future trends of 
construction costs [6, 46], it is surprising that only little or no research 
appears to have been conducted using time series techniques. This might 
have informed the recommendation of TS technique in the review of 
BERR construction price and cost indices as a means of improving the 
existing practice [4]. This also justifies the focus of this study on the UK 
construction industry. Time series approach has been recognised as a 
useful and powerful tool for improving predictive accuracy [1, 5].[1] 
probably provides one of the pioneering studies in the application of time 
series forecasting technique within the UK construction industry. Fellows 
studied escalation management using forecasts of building cost index, 
tender price index and the effects of inflation on building projects. The 
Box-Jenkins methodology was employed for forecasting. The study found 
that stochastic TS models resulted in lower forecast errors for both 
building cost and tender price indices compared to similar predictions 
from the BCIS. It also found that non-seasonal factors have the greatest 
influence on the TPI. However, these results were based upon data from 
over 20 years ago and it is unclear if these differences still persist. Also, to 

the best of the author’s knowledge, the findings of that study are yet to be 
validated by any comparable further study over the years. A study by [2] 
compared TPI forecasting accuracies of 2 well-known organisations 
involved in the production and publication of TPI forecasts in the UK: the 
Building cost information service (BCIS) and Davis, Langdon and Everest 
consultancy (DL&E), with their - Akintoye and Skitmore’s (A&S) reduced-
form simultaneous equations. The study noted that BCIS uses regression 
model combined with expert judgement for its TPI forecasts, while DL&E 
uses in-house experts’ judgements for its forecasts. The study further 
showed that the A&S reduced-form simultaneous equations, although 
limited to forecasts from 0 to 3 quarter horizon, performed better than 
the other 2 for the same forecast horizon. However, forecasts up 8 
quarters horizon are used in practice [2-3]. In a similar study, [3] used 
different quantitative techniques to assess the accuracy of the UK TPI 
forecasts produced by BCIS from 1980 to 1992. Also, a simple naïve 
model was developed to forecast TPI over 0 to 8 quarters ahead. It was 
found that the naïve model produced better forecast accuracy than the 
BCIS forecast, although they admitted that the naïve model was negatively 
biased. [3] then suggested optimal linear correction models that can be 
used to adjust the TPI published by BCIS. This suggests the need for a 
more reliable ‘one-stop’ forecasting method to be developed because of 
the complications which may arise in practice when trying to apply 
further corrections to completed forecasts. Besides, naïve models have 
been found to perform poorly in forecast performance [37]. Naïve 
methods involve using most recent or current observation as forecasts for 
future periods [9, 37]. 
 
Exponential Smoothing 
 
ES stochastic TS approach has been used by [26] to forecast electricity 
costs in NHS hospital building. Among the seasonal and non-seasonal ES 
methods considered, the Holt-Winters multiplicative forecasting method 
was found to produce the most reliable forecasts. In a related study, [22] 
used different TS methods to model construction cost indices trends 
based on historical data. The study showed that the Holt-Winters ES 
model is the most accurate TS approach for out-of-sample forecasting of 
CCI, while the seasonal ARIMA model is the most accurate TS approach 
for in-sample forecasting of CCI. In a similar study by the same authors on 
ES TS methods, it was found that both Holt ES and Holt-Winters model 
give high accuracy performance in forecasting CCI, but noted however 
that the ES models do not predict well when there are discrete jumps in 
the dataset [21]. [8] recommends the use of Holt- Winters ES approach 
when there is trend and seasonal variation in the TS data. Also, [47] 
scored dampen ES highest for forecasting accuracy among other methods 
considered. CCI TS data are found to exhibit short-term variations and 
long term trend which makes ES a suitable approach for forecasting [21]. 
The recursive Holt ES and Holt-Winters model building procedures were 
adopted by [21].  
 
Box-Jenkins approach (ARIMA) 
 
The Box-Jenkins approach appears to be the most widely used approach 
in the construction industry as shown in Table 1. This is in line with [16] 
who argues that B-J ARIMA approach is well established in many areas of 
application. In relation to the present study, the technique has been 
widely used for forecasting CCI [6, 15, 18, 21-22] and TPI [1, 5, 41-42]. It 
has been argued that the main advantage of this method is its ability to 
handle almost all TS, couple with its strong theoretical background and 
accuracy compared with more complex methods. The inclusion of 
correlation structure is also seen as an advantage over simple ES which 
assumes no correlation in the TS, although TS data are collected 
sequentially over time with a tendency for serial correlation [5]. The Box-
Jenkins approach is illustrated in figure 1 below as used by [39] and 
adopted for discussion in this section. It is a recursive process to identify 
an ARIMA model that represents a historical TS data. This is then 
extended into the future for forecasting [39]. A tentative model is first 
identified by observing the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Table 2 gives guide to model 
identification using ACF and PACF.  
 
Table 2: Model identification by ACF and PACF 
 
 ACF PACF 
White Noise 
MA (q) 
AR (p) 
ARMA (p,q) 

All zero 
Drop off after lag q 
Die down 
Die down 

All zero 
Die down 
Drop off after lag p 
Die down 

(Source: [39] 

Description of 
forecasts 

TS Techniques  References 

Building cost index ES, Box-Jenkins 
ARMA 

[15] 

Construction cost index ES, Box-Jenkins 
ARMA 

[6, 18, 21-22] 

Tender price index Box-Jenkins ARIMA, 
Vector error 

correction (VEC) 
model 

[1, 5, 41-43] 

Residential construction 
demand 

Box-Jenkins ARIMA [40] 

Construction demand, 
price and productivity 

Box-Jenkins ARIMA [42] 

Construction 
occupational demand 

ES [43] 

Construction demand 
covering times of 

economic austerity 

Box-Jenkins ARIMA [39] 

Short-term productivity ES, ARMA, 
multivariate 

autoregressive (VAR) 

[44] 

Construction labour 
market 

Box-Jenkins ARIMA [20] 

Electricity cost in NHS 
building 

ES [26] 

Regional house price 
inflation 

Dynamic factor 
models, Vector 
autoregressive 

models 

[45] 

Escalation management Box-Jenkins ARIMA [1] 
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The tentative model is then tested for adequacy using parameters such as 
Akaike information criterion (AIC) and Schwartz criterion (SC). Equations 
for the test parameters are stated below [39]: 
 

ὃὍὅὰέὫ
В

      (1) 

 

Ὓὅ ὰέὫ
В

     (2) 

Where: 
¶ В‐  =   sum of squared residuals; 
¶ ὔ    =  number of observations; and  
¶ Ὧ  =  number of independent variables. 

 
The selected ARIMA model is tested for out-of-sample forecast adequacy 
by comparing the forecasts with actual data using the mean absolute 
percentage error (MAPE) or other test statistic. 10% is the generally 
acceptable MAPE for robust forecasting models [20-22, 39]. The above 
procedures were adopted in model development and forecasting of TPI 
and CCI data sets obtained from the BCIS database. However, in terms of 
suitable ARIMA model selection [42], and later supported by [41] confirm 
earlier findings by Fellows in 1991 that an AR(1) model provides the best 
fit models for TPI. Further guidance in ARIMA model selection is provided 
by [5] who state that ‘AR estimates the stochastic process underlying a TS 
where the TS values exhibit non-zero autocorrelation…, while MA estimates 
the process where the current TS value is related to random errors from 
previous time periods’. 

 
Characteristics of time series data 
 
The TS data used to demonstrate the forecasting approaches are the 
tender price indices (TPI) and general building cost indices (GBCI) used 
as proxy for construction cost indices (CCI). Both data are obtained from 
the Building cost information service (BCIS) of the Royal institution of 
chartered surveyors (RICS) of the UK. The data comprise quarterly time 
series from first quarter of 1995 to the fourth quarter of 2010. BCIS 
forecasts from 2011Q1 to 2013Q2 were also obtained from the database. 
The data are characterised using TS plots of observed indices against time 
periods (in quarters). The plots for the 2 data sets are shown in figure 2 
below. This allows for visual examination of the characteristics of the data 
such as noting the presence of any outliers, trends, seasonality, etc that 
are usually associated with time series data.  From the TS plots in figure 2, 
it be can be observed that both TPI and the GBCI indicate overall long-
term increasing trends with some irregular variations which are more 
evident in the TPI series. From figure 2 the 2 series seem to exhibit no 
clear seasonality and may be appropriately fitted with simple linear trend 
models. This agrees with [1] who found that the patterns of UK tender 
price changes covering the period June 1976 to May 1982 showed that 
seasonal effects were not dominant.  However, both series show declines 
from around 2008 which are counter to the trends in previous periods. 
These declines correspond with the period of economic downturn around 
2008 [48], which probably affected the construction market in the UK. 
The decline in trend was more significant in the TPI series suggesting that 
TPI is more sensitive to shocks in the economy compared with GBCI.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Box – Jenkins approach flowchart (Source: [39]) 
 

 
 
Figure 2. Time series plot of tender price and general building cost 
indices (data source: Appendix 1). 
 
Time series modelling process 
 
The data used for model fitting were from 1995Q1 to 2007Q4, while the 
remaining actual data from 2008Q1 to 2010Q4 (12 quarters) were held 
back for testing out-of-sample forecast performances of the models. This 
is in line with general practice in the UK [43], although there are also 
arguments that forecasts up to 8 quarters are used in practice [2-3]. As 
most construction projects extend over several quarters, it may be 
reasonable to adopt the longer periods of 12 quarters in this study. The 
widely used 3-stage approach of model formulation, parameters 
estimation and verification [40, 49-50] were adopted in the modelling 
process. In line with the arguments by different researchers for adopting 
simple approach to forecasting, this study explores simple trends fitting 
capability of Microsoft Excel to develop 4 different time series models for 
each of the 2 series considered. These include Linear, quadratic, 
exponential and autoregressive models. An econometric software EViews 
was also used to develop ARIMA models and exponential smoothing 
forecasts to compare with the above 4 models from Excel.  
 
TS modelling using Microsoft Excel 
 
The Excel software in Microsoft Office 2010 package allows different 
trend lines to be automatically fitted to TS data. 3 models comprising 
linear, quadratic and exponential trends were developed from this 
method, assuming that the data are not affected by seasonal and irregular 
variations as indicated by the samples used for model development. The 
software was also used to compute regression outputs for autoregressive 
models. The results were checked for in-sample goodness of fits by 
plotting predicted values with actual values including residuals analyses. 
The models were then used to provide out-of-sample forecasts and the 
results compared with actual values earlier held back as described above. 
The outputs of the different models as well as errors computation details 
from Excel are presented from Tables 9 to 13 for the 2 data sets. The 
model equations are shown below:  
 

i. Tender price index series: 
 

ü Linear model: y = 2.5486x + 113.78           (3) 
ü Quadratic model: y = 0.0214x2 + 1.4581x + 122.87  (4) 
ü 2nd order Autoregressive model:  

  Ŷi = -0.621 + 0.639Yi-1 + 0.383Yi-2             (5) 
ü Exponential model: y = 121.18e0.0143x          (6) 

 
ii. Construction cost index series (General building cost index): 
ü Linear model: y = 2.1495x + 149.74             (7) 
ü Quadratic model: Y =  0.0325x2 + 0.4903x + 163.57 (8) 
ü 3rd order Autoregressive model:  

          Ŷi = -5.028 + 0.783Yi-1 - 0.152Yi-2 + 0.412Yi-3           (9) 
ü Exponential model: y = 155.09e0.0104x          (10) 

 
Where 
 

Y, Yi = observed value of time series at time i 
Ŷi = fitted value of the series at time i 
Yi-1 = observed value of time series at time i-1 
Yi-2 = observed value of time series at time i-2 
Yi-3 = observed value of time series at time i-3 
X = independent variable 
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The coefficient of determination R2 provides a measure of the usefulness 
of a given model equation. These are presented in table 3 for the 4 models 
considered in this section. The results indicate that R2 values for all the 
models range from 0.9573 to 0.9970. These indicate good relationships 
between the dependent and independent variables. For instance, R2 value 
for CCI linear model suggests that 95.73% of variation in the dependent 
variable can be explained by the variability in the independent variable 
[51]. 
 
Table 3. R2 values for different models 
 

Model TPI time series CCI time series 
Linear 0.9762 0.9573 
Quadratic 0.9885 0.9968 
Exponential 0.9867 0.9791 
Autoregressive 0.9913 0.9970 

 
AR(p) model estimation using Excel 
 
The AR(p) model is part of the Box-Jenkins ARIMA models comprising 
AR(p), MA(q) and ARMA(p,q). The general form of the pth-order AR model 
is given by: 

Yi = A0 + AiYi + AiYi-1 + A2Yi-2  + … +  ApYi-p + δi  (11) 
Where 
A0 = fixed parameter to be estimated from least-squares regression 
analysis; A1, A2,.. Ap = AR parameter to be estimated from least-squares 
regression analysis; δi = non-autocorrelated random error component 
(with 0 mean and constant variance); and other parameters are as 
defined above [51]. 
The procedure according to [51] involves selecting a model with several 
parameters and then use t test with n-2p-1 degrees of freedom (df) to 
eliminate parameters that are not significant. The test is set as follows 
[51]: 
 
ü Null hypothesis Ho:Ap = 0 (the highest-order parameter is 0) 
ü Against alternative hypothesis H1:Ap ≠ 0 (the parameter Ap is 

significant) 
ü Ho is rejected if t > tn-2p-1, or if t < -tn-2p-1.   

 
If Ho is not rejected, it is concluded that there are too many parameters in 
the model and Ap is deleted. This procedure is repeated until the model 
with the right parameters is identified [51]. This procedure resulted in a 
2nd – order AR model for the TPI series, while a 3rd – order model was 
identified for the GBCI series. The models are stated above in equations 5 
and 9 respectively. Considering the 3rd-order parameter in the model for 
TPI data, from Excel output, t = -0.276 < t45 = ± 2.0141 (from t 
distribution) using the lower tailed critical value, and p = 0.784 > α = 0.05. 
Hence the null hypothesis is not rejected. It is therefore concluded that 
the 3rd-order parameter is not significant and should be removed from the 
model. Also for the remaining 2nd-order model, t = 2.787, t47 = ±2.0117 
and p = 0.008 < α = 0.05. Hence the null hypothesis is rejected and the 2nd-
order model is adopted for forecasting.  A similar procedure is used for 
the GBCI data. The tentative 3rd-order AR model is tested as follows: 
 
Test hypothesis  H0:A3 = 0 
Against  H1:A3 ≠ 0, 
 
From Excel output (appendix 12), t = 2.905 and p-value = 0.006. Also from 
t distribution table, t45 = ±2.0141. It follows that t = 2.905 > t45 = +2.0141, 
and p = 0.005 < α = 0.05, therefore Ho is rejected and it is concluded that 
A3 is significant and cannot be removed from the model. The 3rd-order AR 
model is therefore accepted for forecasting GBCI. Figures 3 and 4 show 
graphical representations of in-sample model fits and out-of-sample 
forecasts for the different models obtained using the approach described 
above. 

 
 

Figure 3. Comparison of different models on TPI time series (Note: L = 
linear model, Q = quadratic model, AR = 2nd-order autoregressive model, 
and EXP = exponential model). 
 

 
 
Figure 4. Comparison of different models on GBCI (General building cost 
index) time series (Note: L = linear model, Q = quadratic model, AR = 3rd -
order autoregressive model, and EXP = exponential model). 
 
Residual analysis 
 
A widely used method of testing whether the fitted models give adequate 
description of the data set is to examine the residual plots. Residual is the 
difference between the observed value and the actual value of a TS. The 
fitted value is described as the one step ahead forecast in univariate TS, 
while the residual is the one step ahead forecast error [49-51]. The 
residual plots for TPI series are presented in figure 5 below. 
 

 
 

 
 

 
 

 
 
Figure 5. Residual plots for TPI forecasting models obtained using Excel: 
(a) Linear, (b) Quadratic, (c) Autoregressive, and (d) Exponential  
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Figure 6. Residual plots for GBCI forecasting models obtained using 
Excel: (a) Linear, (b) Quadratic, (c) Autoregressive, and (d) Exponential.  
 
According to [51], when the residuals are randomly distributed above and 
below 0 through time, the model fit is adequate, while a systematic 
pattern indicates inappropriate fit. Hence, from figures 5 (a – d), the 
quadratic and autoregressive models for TPI series appear to exhibit 
random residuals and therefore may have better fits compared with 
linear and exponential models which tend to show systematic patterns 
each. Similarly, the residual plots for the GBCI series are shown in figure 6 
below. Again, the quadratic and the autoregressive models exhibit 
random residuals around 0. This suggests that the models provide better 
fits than the linear and exponential models which appear to show 
systematic pattern of residuals.  Also, considering figures 5 (a, b, d) and 6 
(a, d), the systematic patterns indicate that there are autocorrelations in 
the data and the models also failed to capture the cyclical effects in the 
series. According to [51], the presence of significant autocorrelation in a 
set of data tends to question the validity of the fitted data. Hence, the AR 
model may be the most reliable considering the random residuals 
associated with it. 
 
Time series modelling using EViews 6 
 
EViews version 6 is the econometric and statistical software which was 
adopted as second software to model the TPI and GBCI time series data in 
this study to further explore the common TS modelling approaches and 
also to compare with forecasting performances of different models 
obtained from Excel. The 2 traditional methods of Box-Jenkins ARIMA 

approach and Exponential Smoothing as shown from previous literature 
were used to produce TS models for TPI and GBCI in EViews. 
 
Box-Jenkins ARIMA models 
 
The general procedure according to [39] has been shown in the flow chart 
in figure 1. This is used to develop ARIMA models for TPI and GBCI data in 
this section. The tentative models are estimated using correlograms 
which are plots of autocorrelation function (ACF) and partial 
autocorrelation function (PACF) against lags (see Table 4). These are 
calculated and plotted automatically by EViews based on the TS data 
input. ACF is used to identify the order of a moving average MA(q) 
process, while PACF is used for autoregressive AR(p) process. Both ACF 
and PACF are considered for a mixed ARMA(p,q) process [50]. Also, the 
results of unit root test from EViews can be used to determine if the series 
is a stationary process or not. An ARIMA model is a model which gives a 
stationary ARMA model when difference d times. Usually first or second 
differences will bring a non-stationary process to stationary. The first and 
second differences are shown in equations 12 and 13 below [50]. 
 
                                                      Yi = Yi - Yi-1        (12) 

2Yi = Yi - 2Yi-1 + Yi-2    (13) 
Where 
 

Yɳi, ɳ2Yi = 1st and 2nd differences of time series 
Yi = observed value of time series at time i 
Yi-1 = observed value of time series at time i-1 
Yi-2 = observed value of time series at time i-2 
 
Table 4. Behaviour of ACF and PACF for stationary process 
 
Model ACF PACF 
MA(q) Cuts off after lag q Exponential decay and/or 

damped sinusoid 
AR(p) Exponential decay 

and/or damped 
sinusoid 

Cuts off after lag p 

ARMA(p,q) Exponential decay 
and/or damped 
sinusoid 

Exponential decay and/or 
damped sinusoid 

(Source: [50]) 
 
EViews output for the Augmented Dicker-Fuller (ADF) unit root tests for 
both TPI and GBCI data are presented in Tables 5 and 6. The TPI series 
became stationary after first difference showing ADF test statistic value (-
2.866) becoming less than the critical value (-1.9477) at 5% level of 
significance and also with probability value (0.0050) less than 0.05. 
Hence, the null hypothesis that the differenced series has a unit root is 
rejected. Then looking at the correlogram in figure 7 and considering the 
guides in Tables 2 and 4, an AR(1) model is identified for the TPI series, 
since the PACF cuts off after lag 1. The ACF and PACF have also decayed 
towards 0 in figure 8 suggesting that the series have become stationary 
after first difference. Table 5 presents the coefficients of the estimated 
model, while figures 9 and 10 present the model fit and out-of-sample 
forecast for the TPI series. 
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Figure 7. Correlogram of TPI series 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Correlogram of TPI series after 1st difference 
 
Table 5. EViews output for TPI model estimation  

 

 
 

Figure 9. TPI AR (1) model - Actual/Fitted with residual graph 

 

Figure 10. TPI AR(1) model  out-of-sample forecast (2008Q1 – 2010Q4) 
 

 
 

Figure 11 (a).  Correlogram for GBCI series  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 (b). Correlogram for GBCI series after 1st difference 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 (c). Correlogram for GBCI series after 2nd difference 
 
Similarly, the correlograms for GBCI series are presented in figure 11(a-
c). In this case the series was not stationary after first difference as shown 
in the high probability value (0.790892) and the ADF test statistic 
(0.8801) failed to reject the null hypothesis of the unit root test The 
correlogram in figure 11(c) also suggests that an AR(3) may be 
appropriate since PACF cuts off after lag 3. Table 6 presents the 
coefficients of the estimated AR(3) model, while figures 12 and 13 show 
graphical representations of the model fit and out-of-sample forecasts for 
the GBCI series. 
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Dependent Variable: Y   
Method: Least Squares   
Date: 08/12/11   Time: 13:39   
Sample (adjusted): 1995Q2 2007Q4  
Included observations: 51 after adjustments  
 Coefficient Std. Error t-Statistic Prob.   
C -0.098761 2.614532 -0.037774 0.9700 
Y(-1) 1.014045 0.014419 70.32598 0.0000 
     
     
R-squared 0.990190     Mean dependent var 179.7451 
Adjusted R-squared 0.989989     S.D. dependent var 38.83650 
S.E. of regression 3.885693     Akaike info criterion 5.590906 
Sum squared resid 739.8318     Schwarz criterion 5.666664 
Log likelihood -140.5681     Hannan-Quinn criter. 5.619855 
F-statistic 4945.744     Durbin-Watson stat 2.745503 
Prob(F-statistic) 0.000000    
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Table 6: EViews output for AR (3) GBCI model estimation results 

 

 
Figure 12. Actual/fitted with residual plots of in-sample forecast of GBCI 
with AR(3) model 

 
Figure 13. Out-of-sample forecast for GBCI series with AR(3) model 
(2008Q1 – 2010Q4) 
 
Exponential smoothing (ES) approach 
 
According to [8], Holt-Winters exponential smoothing is recommended 
where a time series is dominated by trend and seasonality. As shown in 
the TS plot in figure 2, both TPI and GBCI series are dominated by trend 
and likely to exhibit seasonality, since the data were collected quarterly. 
[51] argue that data observed monthly and quarterly are prone to 
seasonality. Also, [21-22] have used the Holt-Winters ES approach to 
forecast ENR CCI in the United States and concluded that it provided the 
best out-of-sample forecast among other methods. Hence, the Holt-
Winters multiplicative ES was used in this study to forecast TPI and GBCI 
time series.  The EViews user’s guide [52] gives details of the Holt-
Winters multiplicative ES with 3 parameters noting that the method: “is 
appropriate for series with a linear time trend and multiplicative seasonal 
variation. The smoothed series is given by,  

 
where  

  
 
These three coefficients are defined by the following recursions:  

 
where are the damping factors and is the seasonal 
frequency specified in the Cycle for Seasonal field box.  
Forecasts are computed by:  
 

 
where the seasonal factors are used from the last estimates” [52].  
 
Similar approach as above has been used by [21-22]. The output from 
EViews of parameters estimate for the ES of TPI series is presented in 
Table 7 below. The 0 values of Beta and Gamma indicate that the trend 
and seasonal components are estimated as fixed and not changing. Also, 
the graphical representation of the ES forecast for TPI series is shown in 
figure 14. Similarly, the results of parameter estimate for the GBCI data 
are given in table 8, while figure 15 presents the ES forecasts for the GBCI 
series from 1995Q1 to 2010Q4. 
 
Table 7. EViews output of parameters estimate for ES of TPI data. 
 

Figure 14. Holt-Winters Exponential Smoothing forecast of TPI series 
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YF ± 2 S.E.

Dependent Variable: Y   
Method: Least Squares   
Date: 08/13/11   Time: 11:24   
Sample (adjusted): 1995Q4 2007Q4  
Included observations: 49 after adjustments  
 Coefficient Std. Error t-Statistic Prob.   
C -5.027753 1.886102 -2.665685 0.0106 
Y(-1) 0.782550 0.137963 5.672182 0.0000 
Y(-2) -0.152371 0.182087 -0.836801 0.4071 
Y(-3) 0.412001 0.141825 2.905004 0.0057 
R-squared 0.997035     Mean dependent var 207.1429 
Adjusted R-squared 0.996837     S.D. dependent var 32.54676 
S.E. of regression 1.830359     Akaike info criterion 4.125009 
Sum squared resid 150.7596     Schwarz criterion 4.279443 
Log likelihood -97.06271     Hannan-Quinn criter. 4.183601 
F-statistic 5043.981     Durbin-Watson stat 2.251436 
Prob(F-statistic) 0.000000    

Date: 08/13/11   Time: 14:05  
Sample: 1995Q1 2007Q4   
Included observations: 52   
Method: Holt-Winters Multiplicative Seasonal 
Original Series: TPI   
Forecast Series: TPISM   
Parameters: Alpha  0.7300 
 Beta  0.0000 
 Gamma  0.0000 
Sum of Squared Residuals  636.4447 
Root Mean Squared Error  3.498474 
End of Period Levels: Mean 251.2814 
  Trend 2.395833 
  Seasonals: 2007Q1 0.998811 
   2007Q2 1.006608 
   2007Q3 0.999081 
   2007Q4 0.995500 
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Table 8. EViews output of parameters estimate for ES of GBCI data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Error measures and forecast adequacy 
 
In addition to residual analysis, a number of error measures are available 
for checking the adequacy and forecast performance of TS models. The 
selected model is tested for out-of-sample forecasting by comparing the 
forecasts with actual values using different error measures. The forecast 
error statistics used in this study are the mean absolute error (MAE), 
mean absolute percentage error (MAPE), Root mean squared error 
(RMSE) and Theil’s Inequality Coefficient (U). Smaller values of the 
statistic suggest better models. The error statistics are computed using 
equations 14 to 17. The mean absolute percentage error (MAPE) is widely 
used to determine forecast adequacy. Up to 10% MAPE is the generally 
acceptable limit for robust forecasting models [20-22, 39, 42].  
 

ὓὃὉ  В  ȿὩȿ            (14) 

 

-!0%ρππ Ø В        (15) 

RMSE =  В ὣ  ὣ   (16) 

Where: 
¶ Å = forecast error at time t; 
¶ 9 = actual value at period t; and 
¶ 4 = total number of periods 

 
The Theil’s inequality coefficient (U) is used to test the reliability of 
forecasts. It is expressed by the following equation: 
 

5  
В  

В В
     (17) 

Where: 
¶ 9 = forecast value of Yt, other parameters 

remain as stated above. 
If U = 0, 9 = 9 for all t, then there is perfect fit; conversely, 
If U = 1, then forecast accuracy is bad [3, 22, 39]. 
Tables 9 and 10 present the 12-quarters ahead out-of-sample forecast 
errors for TPI and GBCI series concerning all the models considered in 
this study. These, in addition to comparing the forecast accuracies of 
different forecasting methods also compare between forecasts using Excel 
and EViews softwares.  

 
Figure 15: Holt-Winters ES forecasts of GBCI series 
 

Table 9. 12-quarters ahead forecast errors for TPI series    
                           
Software Model MAE MAPE (%) RMSE U 

Excel 

Linear 34.61 15.92 40.63 0.0830 
Quadratic 51.55 23.56 57.91 0.1148 
AR(2) 46.52 21.31 53.10 0.1063 
Exponential 49.93 22.84 56.51 0.1123 

EViews 
AR(1) 48.29 22.10 54.73 0.1090 
Exponential 
Smoothing 

 
40.68 

 
18.62 

 
45.98 

 
0.0932 

 
Table 10. 12-quarters ahead forecast errors for GBCI series  
 
Software Model MAE MAPE (%) RMSE U 

Excel 

Linear 14.16 4.92 14.60 0.0260 
Quadratic 12.63 4.35 15.08 0.0257 
AR(3) 13.76 4.72 16.80 0.0285 
Exponential 5.37 1.88 7.36 0.0129 

EViews 
AR(3) 12.96 4.45 15.89 0.0270 
Exponential 
Smoothing 

 
5.10 

 
1.76 

 
5.80 

 
0.0100 

 
Comparison of 12-quarters ahead forecast errors for different 
models 
 
According to [2] forecasts which are made beyond the last date for which 
data are available can be referred to as ex ante forecasts. In this study the 
out-of-sample forecasts were made without any data from 1st quarter of 
2008 to the 4th quarter of 2010 covering 12 quarters. The forecasts were 
based on models fitted to data between the 1st quarter of 1995 and the 4th 
quarter of 2007. Hence, this section considers errors for ex ante forecasts. 
Tables 9 and 10 show corresponding trend in values for the 4 different 
error measures used. Hence, discussion on adequacy of the models can be 
based on a representative statistic such as MAPE which has been widely 
used by previous researchers as shown earlier in this paper. For instance, 
all the 4 error measures agree as shown in Table 9 that the simple linear 
model from Excel provides the best forecast of TPI series. Similarly, the 
different error measures are also in agreement concerning GBCI series. 
Table 10 suggests that the Holt-Winters multiplicative exponential 
smoothing provides the most accurate out-of-sample forecast of GBCI 
series. This agrees with earlier study by [21-22] who found that the Holt-
Winters ES provided the best out-of-sample forecasts of ENR CCI in the 
US, although it is not able to predict discrete jumps. The present study 
supports this finding as seen in the poor forecast of TPI series during 
periods of economic declines. 
 
Tables 9 and 10 indicate that linear model and exponential smoothing 
method provide better forecasts of TPI than other methods, while ES 
method and exponential trend model performed better than others in 
forecasts of GBCI. Table 9 further shows that all the models did not 
provide adequate forecasts of TPI series during the period of economic 
decline as their MAPE exceed the 10% limit for robust forecasts. 
Nevertheless, this does not suggest that the models are not useful as the 
level of accuracy of forecasts according to [2] depends on such factors as 
intended use, form of forecast - whether point or interval forecast, time 
horizon and availability of data. These suggest that there can be no 
generally fixed limit for forecast accuracies. Conversely, Table 10 shows 
that all the models provide adequate forecasts of the GBCI series based on 
the 10% limit of MAPE. 
 
Comparison between Excel and Eviews forecasts 
 
In this study autoregressive models were applied to TPI and GBCI data 
using both Excel and EViews softwares. Hence, it may be appropriate to 
use AR models to compare between the 2 softwares. The study found that 
the 2 softwares were in agreement in the estimation of AR(3) for GBCI but 
there is conflicting parameter estimates for TPI. While Excel indicated 
AR(2) as appropriate for TPI, EViews indicated AR(1) for the same data. 
However, the values of error measures are closely related. From Table 11 
below, Eviews produced slightly more accurate forecasts of GBCI within 
the range of 5.56% - 6.17%, while Excel also appears to produce slightly 
more accurate forecast of TPI within the range of 2.54% - 3.80%. A critical 
observation of this result indicates that the former may be more reliable 
than the later. This is because the same order AR models were used for 
GBCI, while differing order AR models were used for TPI forecasts which 
may also have influence on the results. However, this comparison 
suggests that both Excel and EViews tend to produce approximately the 

Date: 08/13/11   Time: 12:34  
Sample: 1995Q1 2007Q4   
Included observations: 52   
Method: Holt-Winters Multiplicative Seasonal 
Original Series: ES   
Forecast Series: ESSM   
Parameters: Alpha  1.0000 
 Beta  0.1800 
 Gamma  0.0000 
Sum of Squared Residuals  77.73702 
Root Mean Squared Error  1.222679 
End of Period Levels: Mean 270.7594 
  Trend 2.964693 
  Seasonals: 2007Q1 0.997598 
   2007Q2 0.995027 
   2007Q3 1.006487 
   2007Q4 1.000889 
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same forecast accuracies and may be used interchangeably depending on 
availability and ease of use. 
 
Table 11. Percentage differences between Excel and EViews 12-quarters 
ahead forecast errors with AR models 
 
 Error measures 
Percentage differences 
between Excel and EViews 

MAE MAPE RMSE U 

TPI (%) 3.80 3.71 3.07 2.54 
GBCI (%) -6.17 -6.07 -5.73 -5.56 
Note: Negative values indicate EViews performed better than Excel  
 
Comparison between actual and forecasts values of TPI and GBCI 
from 2008Q1 – 2010Q4 
 
Tables 12 and 13, including figures 16 and 17 compare ex ante forecasts 
of TPI and GBCI respectively from the present study with actual values 
obtained from BCIS covering 12 quarters from 2008Q1 to 2010Q4.  From 
figure 16 below, it can be seen that actual values of TPI lie completely 
outside the range of forecasts from this study except for the 1st quarter of 
2008. This suggests that the models failed to capture the sharp declines in 
TPI around the period of economic downturn in the country [48]. It also 
reflects the weakness in the underlying assumption of time series 
forecasting that events of the past can repeat themselves in the present 
and future. Furthermore, it shows the low level of predictability in real 
world which appears to have been supported by some notable time series 
researchers [8, 47, 53]. However, as seen earlier, the GBCI appears less 
sensitive to economic downturn relative to TPI. Figure 17 shows that 
actual GBCI values lie between forecasts from this study indicating that 
the study has reasonably predicted the values of GBCI for the 12 quarters 
between 2008 and 2010. This suggests that the models developed from 
this study can be reasonably applied to forecast GBCI in the UK. 
 

 
 
Figure16. TS plot showing TPI forecasts from various models in 
comparison with actual values for 2008Q1-2010Q4 
 

 
 
Figure 17. TS plot showing GBCI forecasts from various models in 
comparison with actual values for 2008Q1-2010Q4 
 
 
 
 
Comparison between present study and previous studies 

 
It seems difficult to draw direct comparison between this study and 
previous ones in terms of forecast errors because of differences of 
situations, locations and data characteristics. However, there are a few 
studies which are closely related to the present study. This study agrees 
with [2] on the inability of the forecast models to accurately predict TPI 
during periods of economic decline. This may be due to the underlying 
assumption of TS methods that historical events would repeat in the 
present and future periods. However, unlike [2], all the models 
considered in this study are able to provide robust forecasts of TPI up to 4 
quarters ahead and up to 12 quarters ahead for GBCI (Table 10). 
Similarly, considering the period of forecasts in the present study, the 
results suggest that the models developed here performs better than the 
naïve models which [3] found to perform better than BCIS forecasts with 
MAPE of 12.23% for 8 quarters forecast horizon, although they also 
agreed that the models were negatively biased. The findings in this study 
also agree with [1] who used the Box-Jenkins approach to forecast UK 
TPI, that AR models are appropriate for modelling TPI. However, Fellows 
failed to use easily identifiable error measures which make comparison 
difficult in terms of forecast accuracy. The work of [41] has also indicated 
significant difference of variation of quarterly TPI series between UK and 
Singapore which underscores the need for every data to be modelled 
based on the characteristics of the data. While the UK TPI seems to be 
dominated by upward trend, TPI for Singapore from Goh’s study shows 
visible seasonal fluctuations. However, the time plot of ENR CCI suggests 
that the movements in construction cost in the US and UK are similar with 
both series dominated by increasing trends [18, 21-22]. The 12 quarters 
ahead forecast errors obtained in this study for TPI (Table 9) range from 
15.92% - 23.56% of MAPE, and 0.0834 – 0.1148 of the Theil’s inequality 
coefficient (U). The results indicate that the models were not able to give 
robust forecasts during the periods of declines. This agrees with [39] that 
Box-Jenkins method is unable to give robust forecast during times of 
sharp fluctuations in a time series. Other methods also showed the same 
disadvantage. Conversely, GBCI forecast errors range from 1.76% - 4.92% 
of MAPE and 0.010 – 0.0285 for U as seen earlier in Table 10. These are 
within range of errors obtained by [43] for Hong Kong TPI forecast using 
the Box-Jenkins approach. They had 15.4% for MAPE and 0.079 for U in 
their study. 
 
Comparison between BCIS forecasts and present study forecasts 
from 2011Q1 – 2013Q2 
 
In order to compare results of this study with BCIS forecasts, new trend 
models from Excel and EViews were developed based on TS data from 
1995Q1 to 2010Q4. The new trend models from Excel are presented from 
equation 18 to 23 below.  
 

i) Tender price index series: 
 

ü Linear model: y = 2.0219x + 123.97(18) 
ü Quadratic model: y = -0.0235x2 + 3.5037x + 108.65 (19) 
ü Exponential model: y = 128.54e0.0113x  (20) 

 
ii) Construction cost index series (General building cost 

index): 
 

ü Linear model: y = 2.3495x + 146.1 (21) 
ü Quadratic model: y = 0.021x2 + 1.028x + 159.76 (22) 
ü Exponential model:  y = 154.37e0.0106x(23) 

 
The forecast results from these additional models are presented in Tables 
14 and 15, as well as figures 18 and 19 for TPI and GBCI respectively. A 
close observation of figures 18 and 19 indicates that BCIS forecasts lie 
within range of forecasts generated by various models in this study.  For 
the TPI data, the AR(1) model using EViews appears to produce the 
closest forecasts to BCIS, with the forecasts falling slightly below BCIS 
forecasts. On the other hand, for the GBCI data, the Holt-Winters 
multiplicative exponential smoothing forecasts seem to produce the 
closest forecasts to BCIS, with both forecasts lines appearing virtually 
superimposed against each other and having only slight differences 
between 2013Q1 and 2013Q2. Furthermore, the AR(3) model using 
EViews also appears to have slightly overestimated BCIS forecasts. These 
findings suggest that the results from this study are reliable and may be 
applied in practice. It may also trigger further studies in the future, 
especially as the actual values for the forecasts up to 2013 in this study 
begin to unfold. 
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Table 12. TPI forecast values from various models in comparison with 
actual values for 2008Q1-2010Q4 

 
Table 13. GBCI forecast values from various models in comparison with 
actual values for 2008Q1-2010Q4 
 

 
Table 14. TPI forecast values from various models in comparison with 
BCIS forecast for 2011Q1-2013Q2 

 
Table 15. GBCI forecast values from various models in comparison with 
BCIS forecast for 2011Q1-2013Q2 

 
 
 
 
 
 
 

 
 
Figure 18. TS plot showing TPI forecasts from 
various models in comparison with BCIS forecast for 
2011Q1-2013Q2 

 

 
 
Figure  19. TS plot showing GBCI forecasts from various models 
in comparison with BCIS forecast for 2011Q1-2013Q2 

 
 
CONCLUSION 
 
This study agrees with previous researchers that simple 
methods do not necessarily perform worse than 
sophisticated methods. The adequacies of various 
forecasting models were analysed using residual analysis 
and 4 error measures, namely: MAE, MAPE, RMSE and the 
Theil’s inequality coefficient. These are among the widely 
used approach for testing forecasts adequacies.  The 
results indicate that all the models perform well for in-
sample fits for both TPI and GBCI but performed poorly in 
ex ante forecasts of TPI data. This might have been due to 
the sharp decline in TPI values corresponding to the 
forecast periods. It also demonstrates the weakness of all 

the TS models in forecasting sudden changes in trend due to economic 
down turn. This is probably a general disadvantage of extrapolative 

forecasting methods such as TS which assume that events 
of the past would repeat themselves in the present and 
future periods. To overcome this disadvantage, it may be 
necessary to combine expert judgements with TS 
forecasting.  
 
However, the GBCI appears to have been reasonably 
forecasted in this study for period of 2008 to 2010, 
suggesting that the models can be applied in practice to 
forecast GBCI in the UK. A comparison of this study with 
previous studies was also conducted in a number of areas. 
Some of the earlier findings relating to this study have 
been revalidated or countered, although most of the 
previous studies seem not to be directly comparable. 

Another comparison was made between the forecasts from BCIS and 
those obtained from this study covering the periods from 2011Q1 to 
2013Q2. The results show that the BCIS forecasts lie within range of 
forecasts from this study for both TPI and GBCI. This suggests that the 
results from this study can be reasonably applied to planning and 
decision making in real practice within the UK construction industry. This 
study has also demonstrated that simple approaches using Excel which 
appears to be readily available in most project offices can be employed by 

  
Excel 

Eviews 
    Linear Quadratic AR Exponential 
Year Actual Ŷi (L) Ŷi (Q) Ŷi (AR2) Ŷi (EXP) EV AR(1) ES 
2008Q1 249 246.3 256.6 252.8 254.9 254.4 253.4 
2008Q2 247 248.9 260.3 256.5 258.6 257.9 257.8 
2008Q3 246 251.4 264.0 259.8 262.3 261.4 258.2 
2008Q4 240 254.0 267.8 263.4 266.1 265.0 259.7 
2009Q1 223 256.5 271.6 266.9 269.9 268.6 262.9 
2009Q2 216 259.1 275.5 270.5 273.8 272.3 267.4 
2009Q3 216 261.6 279.4 274.2 277.7 276.0 267.8 
2009Q4 212 264.1 283.4 277.9 281.7 279.8 269.2 
2010Q1 209 266.7 287.4 281.7 285.8 283.6 272.5 
2010Q2 217 269.2 291.4 285.6 289.9 287.5 277.1 
2010Q3 219 271.8 295.5 289.5 294.1 291.5 277.4 
2010Q4 220 274.3 299.7 293.4 298.3 295.4 278.8 

  
Excel Eviews 

Year Actual Ŷi (L) Ŷi (Q) Ŷi (AR3) Ŷi (EXP) EV AR(3) ES 
2008Q1 274 261.5 276.9 277.2 266.3 275.1 273.1 
2008Q2 278 263.7 280.8 278.3 269.1 280.2 275.3 
2008Q3 288 265.8 284.8 283.7 271.9 284.0 281.5 
2008Q4 288 268.0 288.8 289.0 274.8 287.8 282.9 
2009Q1 285 270.1 292.9 292.8 277.7 292.4 284.9 
2009Q2 284 272.3 297.1 297.2 280.6 296.9 287.1 
2009Q3 285 274.4 301.3 302.2 283.5 301.4 293.4 
2009Q4 287 276.6 305.6 307.1 286.5 306.0 294.7 
2010Q1 289 278.7 310.0 311.9 289.5 310.9 296.7 
2010Q2 295 280.9 314.4 317.0 292.5 315.8 298.9 
2010Q3 298 283.0 318.9 322.3 295.5 320.8 305.3 
2010Q4 299 285.2 323.5 327.7 298.6 326.0 306.6 

Excel 
EViews 

  BCIS linear quadratic AR Exponential 
Period BCIS Ŷi (L) Ŷi (Q) Ŷi (AR2) Ŷi (EXP) EV (AR1) ES 
2011Q1 223 253.4 236.6 224.8 264.9 220.8 218.5 
2011Q2 223 255.4 237.1 228.0 267.9 221.6 220.3 
2011Q3 224 257.4 237.5 231.0 271.0 222.4 219.4 
2011Q4 226 259.4 237.9 234.1 274.1 223.2 218.6 
2012Q1 228 261.5 238.2 237.2 277.2 224.0 217.1 
2012Q2 230 263.5 238.5 240.3 280.3 224.7 218.9 
2012Q3 231 265.5 238.7 243.5 283.5 225.4 218.0 
2012Q4 233 267.5 238.9 246.8 286.7 226.2 217.2 
2013Q1 235 269.5 239.0 250.1 290.0 226.9 215.7 
2013Q2 237 271.6 239.1 253.5 293.3 227.6 217.5 

  
Excel 

EViews 
    linear quadratic AR Exponential 
Period BCIS Ŷi (L) Ŷi (Q) Ŷi (AR3) Ŷi (EXP) EV (AR3) ES 
2011Q1 302 296.5 311.6 307.8 304.2 302.0 300.3 
2011Q2 305 298.8 315.3 313.7 307.5 305.6 302.2 
2011Q3 307 301.2 319.1 318.5 310.7 308.8 307.8 
2011Q4 309 303.5 322.9 323.4 314.1 311.9 308.6 
2012Q1 310 305.9 326.8 329.1 317.4 315.1 309.8 
2012Q2 313 308.2 330.7 334.7 320.8 318.4 311.7 
2012Q3 317 310.6 334.6 340.3 324.2 321.8 317.5 
2012Q4 319 312.9 338.6 346.1 327.7 325.1 318.1 
2013Q1 321 315.3 342.6 352.1 331.1 328.5 319.4 
2013Q2 324 317.6 346.7 358.3 334.7 331.9 321.2 
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practitioners in producing short to middle term forecasts where TS data 
are dominated by trend, for planning and control purposes in the 
construction industry with the likely advantages in cost reduction and 
ease of use. This is based on findings in this study which suggest that 
there are no significant differences between the forecasts obtained using 
Excel and those using EViews. 
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Appendix 1:  
 
Time series data for TPI and GBCI from BCIS 
 

Series: BCIS All-in TPI & GBCI 
year TPI GBCI Remarks 
1995Q1 129 160 Actual index 
1995Q2 129 162 Actual index 
1995Q3 130 165 Actual index 
1995Q4 131 165 Actual index 
1996Q1 127 166 Actual index 
1996Q2 131 167 Actual index 
1996Q3 131 168 Actual index 
1996Q4 130 169 Actual index 
1997Q1 134 170 Actual index 
1997Q2 137 171 Actual index 
1997Q3 140 172 Actual index 
1997Q4 140 174 Actual index 
1998Q1 141 175 Actual index 
1998Q2 147 176 Actual index 
1998Q3 148 181 Actual index 
1998Q4 146 181 Actual index 
1999Q1 147 180 Actual index 
1999Q2 149 180 Actual index 
1999Q3 152 185 Actual index 
1999Q4 154 186 Actual index 
2000Q1 158 187 Actual index 
2000Q2 158 189 Actual index 
2000Q3 162 192 Actual index 
2000Q4 167 194 Actual index 
2001Q1 170 194 Actual index 
2001Q2 171 194 Actual index 
2001Q3 177 198 Actual index 
2001Q4 177 198 Actual index 
2002Q1 182 199 Actual index 
2002Q2 189 201 Actual index 
2002Q3 188 208 Actual index 
2002Q4 190 210 Actual index 
2003Q1 196 211 Actual index 
2003Q2 198 213 Actual index 
2003Q3 198 218 Actual index 
2003Q4 195 218 Actual index 

 
 
 
 
 
 

Appendix 1 continued: 
 

Year TPI GBCI Remarks 
2004Q1 200 220 Actual index 
2004Q2 215 223 Actual index 
2004Q3 213 232 Actual index 
2004Q4 225 234 Actual index 
2005Q1 221 236 Actual index 
2005Q2 228 238 Actual index 
2005Q3 221 245 Actual index 
2005Q4 226 246 Actual index 
2006Q1 228 248 Actual index 
2006Q2 231 252 Actual index 
2006Q3 228 258 Actual index 
2006Q4 232 260 Actual index 
2007Q1 239 262 Actual index 
2007Q2 241 265 Actual index 
2007Q3 248 270 Actual index 
2007Q4 251 271 Actual index 
2008Q1 249 274 Actual index 
2008Q2 247 278 Actual index 
2008Q3 246 288 Actual index 
2008Q4 240 288 Actual index 
2009Q1 223 285 Actual index 
2009Q2 216 284 Actual index 
2009Q3 216 285 Actual index 
2009Q4 212 287 Actual index 
2010Q1 209 289 Actual index 
2010Q2 217 295 Actual index 
2010Q3 219 298 Actual index 
2010Q4 220 299 Actual index 
2011Q1 223 302 BCIS Forecast 
2011Q2 223 305 BCIS Forecast 
2011Q3 224 307 BCIS Forecast 
2011Q4 226 309 BCIS Forecast 
2012Q1 228 310 BCIS Forecast 
2012Q2 230 313 BCIS Forecast 
2012Q3 231 317 BCIS Forecast 
2012Q4 233 319 BCIS Forecast 
2013Q1 235 321 BCIS Forecast 

 
 
 
 

                                                           
 

file:///C:/Program%20Files/EViews6/Help%20Files/wwhelp/wwhimpl/js/html/wwhelp.htm
file:///C:/Program%20Files/EViews6/Help%20Files/wwhelp/wwhimpl/js/html/wwhelp.htm
file:///C:/Program%20Files/EViews6/Help%20Files/wwhelp/wwhimpl/js/html/wwhelp.htm

